Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations.
نویسندگان
چکیده
Hydrogen bonding is a key contributor to the exquisite specificity of the interactions within and between biological macromolecules, and hence accurate modeling of such interactions requires an accurate description of hydrogen bonding energetics. Here we investigate the orientation and distance dependence of hydrogen bonding energetics by combining two quite disparate but complementary approaches: quantum mechanical electronic structure calculations and protein structural analysis. We find a remarkable agreement between the energy landscapes obtained from the electronic structure calculations and the distributions of hydrogen bond geometries observed in protein structures. In contrast, molecular mechanics force fields commonly used for biomolecular simulations do not consistently exhibit close correspondence to either quantum mechanical calculations or experimentally observed hydrogen bonding geometries. These results suggest a route to improved energy functions for biological macromolecules that combines the generality of quantum mechanical electronic structure calculations with the accurate context dependence implicit in protein structural analysis.
منابع مشابه
Potential functions for hydrogen bonds in protein structure prediction and design.
Hydrogen bonds are an important contributor to free energies of biological macromolecules and macromolecular complexes, and hence an accurate description of these interactions is important for progress in biomolecular modeling. A simple description of the hydrogen bond is based on an electrostatic dipole-dipole interaction involving hydrogen-donor and acceptor-acceptor base dipoles, but the phy...
متن کاملDo Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?
Halogens are present in a significant number of drugs, contributing favorably to ligand-protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to...
متن کاملDFT study of dimers of dimethyl sulfoxide in gas phase
Density functional (DFT) calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO) dimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interactions are observed, CH•••O, CH•••...
متن کاملTheoretical Investigation of Interaction between 5-Fluorouracil Anticancer Drug with Various Nitrosamine Compounds
We present detailed theoretical studies of the H-bonded complexes formed from interaction between 5-fluorouracil and various six-membered cyclic nitrosamine compounds. In this study, an investigation on intermolecular interactions in X-NU (X = CH2, SiH2,BH, AlH, NH, PH, O and S) complexes is carried out using density functional theory. The calculations are conducted on B3L...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 18 شماره
صفحات -
تاریخ انتشار 2004